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Abstract 

Background: Multimodal modelling that combines biological and clinical data shows promise in predicting 

transition to psychosis in individuals at ultra high risk (UHR). Individuals who transition to psychosis are known 

to have deficits at baseline in cognitive function and reductions in grey matter volume in multiple brain regions 

identified by magnetic resonance imaging (MRI).  

Methods: In this study, we used Cox proportional hazards regression models to assess the additive predictive 

value of each modality – cognition, cortical structure information, and the neuroanatomical measure of “brain 

age gap” – to a previously developed clinical model using functioning and duration of symptoms prior to service 

entry as predictors in the Personal Assessment and Crisis Evaluation (PACE) 400 cohort. The PACE 400 study is a 

well characterised cohort of Australian youth identified as UHR using the Comprehensive Assessment of At Risk 

Mental States followed for up to 18 years, containing clinical data (from N=416 participants), cognitive data 

(N=213), and MRI cortical parameters extracted using Freesurfer (N=231).  

Results: The results showed that neuroimaging, brain age gap, and cognition added marginal predictive 

information to the previously developed clinical model (fraction of new information: neuroimaging 0-12%, brain 

age gap 7%, cognition 0-16%).  

Conclusions: In summary, adding a second modality to a clinical risk model predicting the onset of a psychotic 

disorder in the PACE 400 cohort showed little improvement in  fit of the model for long term prediction of 

transition to psychosis. 
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Introduction 

The development of criteria for ultra high risk (UHR) of psychosis has facilitated early intervention strategies to 

promote better clinical outcome[1]. Although there is meta-analytic evidence that 25% of UHR individuals 

transition to first episode psychosis over a 3-year period[2], we are currently unable to identify the level of risk 

at the individual level. Being able to do this would enable individualised treatment strategies to be developed 

using currently available treatments and also enable efficient stratification of UHR individuals in clinical trials of 

new treatments.  

The majority of approaches to date that have attempted to generate individualised prediction models use either 

traditional multivariate techniques such as Cox proportional hazard[3]–[6] and logistic regression[7], [8], or 

machine learning models such as support vector machines[9]–[11] and greedy algorithms[12]. Recently, 

prediction models that combine multiple domains such as clinical, structural magnetic resonance imaging (MRI), 

cognition, genetic markers, and blood markers have been shown to improve psychosis prediction accuracy in 

UHR cohorts e.g., as demonstrated by the PRONIA consortium in recent studies using multimodal, multisite 

machine learning models[11], [13]. Such multimodal models can provide important information regarding the 

value of more expensive and complex assessment workflows including genomic testing and MRI as compared 

to structured clinical and cognitive assessments[14], [15]. To drive the implementation of prediction models in 

practice, there is a need to understand the benefit of including complex assessments as a low number of 

predictors or modalities, in particular non-invasive, lowers the difficulty of translation into clinical practice and 

should be included as objective during the development of prediction models besides a high predictive accuracy. 

Here, we validate the new information introduced by new predictors in a nested Cox regression model by 

determining the fraction of new information added to the total predictive information over an extended follow 

up period investigating the relevance of adding complex modalities. 

Clinical variables known to predict transition to psychosis in UHR cohorts include: long duration of symptoms 

prior to presentation to clinical services[20], [21], severity of positive[22], [23] and negative psychotic 

symptoms[24], [25], poor functioning and quality of life[26], [27]. Cognition is impaired across domains in UHR 

and is a key prognostic biomarker of transition to first episode psychosis (FEP)[28]. Neuroimaging studies have 

found the surface area in rostral anterior cingulate, lateral and medial prefrontal regions, and parahippocampal 

gyrus[29], the mean anterior genu thickness[30], and the cortical thinning rate[31] to be predictive of transition 

to psychosis. One relatively new imaging concept, brain age gap, shows potential for prediction for transition to 

FEP[32]. Magnetic Resonance Imaging (MRI) scans can be used to estimate an individual’s brain age by using 

prediction models that were trained on normative population data[60]. Brain age gap refers to the difference 
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between the estimate of an individual’s brain age and the individual’s chronological age[61]. A positive brain age 

gap indicates an ‘older’ brain as compared to the chronological age whereas a negative brain age gap suggests 

a ‘younger’ brain. Brain age gap has been part of an increasing number of studies over the past decade showing 

that higher brain age gap scores are associated with cognitive impairment and with schizophrenia or bipolar 

disorder [11], [33], [62]–[64]. 

In the current analysis, we investigated the potential benefit of using a multimodal model – compared to a 

clinical risk model alone – to estimate the transition hazard in UHR individuals using the PACE 400 data set. The 

aim was to assess the individual additive predictive value of cognition, cortical structure information, and brain 

age gap to a clinical Cox proportional hazards model developed by Nelson et al.[16]. The clinical model consisted 

of poor functioning (Global Assessment of Functioning, GAF), duration of symptoms prior to service entry, and 

UHR subgroup. The aim of this study was to quantify the benefits of including additional modalities in predicting 

transition to FEP in the PACE 400 cohort rather than finding the most generalisable prediction model. 

Method 

The PACE 400 study 

The PACE 400 study is the first long-term follow-up of a UHR cohort (up to 15 years after entry to the Personal 

Assessment and Crisis Evaluation [PACE] clinic). The PACE 400 cohort[16] (N = 416) comprised all UHR patients 

participating across seven studies (3 intervention[34]–[36], 4 cohort[37]–[40]) at the PACE clinic in Melbourne, 

Australia, between 1993 and 2006.  

The enrollment criteria and assessment of UHR status at baseline are outlined in the supplemental material. The 

main outcome of interest in the PACE 400 study was transition to psychotic disorder. Details on how the 

psychosis status was determined in the PACE 400 study are described in the supplemental material. Time to 

follow-up ranged from 2.4 to 18.6 years after baseline with a mean follow-up time of 7.5 years (SD = 3.2 

years)[16]. The study combined individual information from multiple substudies across multiple domains 

including clinical assessments, cognition, neuroimaging, and in some cases fluid biospecimens. Previous studies 

have investigated cortical structure in the PACE 400 cohort but either in a smaller cohort[17] or only in 

individuals who did not transition[18]. Further, cognitive predictors in the PACE 400 cohort were previously 
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assessed in a study [19] but not in terms of the model fit.  

Measures 

Clinical measures 

At baseline, negative symptoms were assessed using the Scale of Assessment for Negative Symptoms 

(SANS)[41], positive symptoms with the Brief Psychiatric Rating Scale, psychotic subscale (BPRS)[42] and the 

Comprehensive Assessment of At Risk Mental States (CAARMS)[1], and depressive symptoms using the Hamilton 

Rating Scale for Depression[43].  

Functioning 

Functioning was determined using the Quality of Life Scale (QLS)[44] and the Global Assessment of Function 

(GAF)[45]. 

Structural imaging 

Details on MRI scanners used for MRI acquisition, cortical reconstruction, and volumetric segmentation using 

FreeSurfer[46] are outlined in the supplemental material.  

The neuroimaging measures demonstrated a large variance between scanner sites due to different types of 

scanners that were deployed (see Figure S1). We applied the ComBat method[49] prior to our analysis to 

harmonize neuroimaging measures across sites. The ComBat method assumes an additive and multiplicative 

scanner or site effect which can be estimated from the data using conditional posterior means and subsequently 

be removed[50]. Hence, ComBat requires a sufficient sample size from each site or scanner to successfully 

estimate the multiplicative effect. The outcome measure of transitioning to FEP was included as covariate to 

align the distributions of individuals transitioning to FEP and individuals who did not transition across sites[50]. 

To reduce the dimension of the feature space for each neuroimaging domain, we applied bilateral principal 

component analysis (PCA) [51] to maximize the variance in the data. We also included cortical thickness values 

for fusiform, superior temporal, and paracentral regions as candidate predictors as they have been associated 

with psychosis conversion in the ENIGMA clinical high risk (CHR) for psychosis initiative[52]. 

Cognition 

IQ at baseline was measured using a range of age-appropriate scales across studies[53] including the Wechsler 

Adult Intelligence Scale—Revised (WAIS-R)[54], the Wechsler Abbreviated Scale of Intelligence[55], or the 
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Wechsler Intelligence Scale for Children[56]. Verbal list learning and memory was assessed with the Rey Auditory 

Verbal Learning Test (RAVLT)[57]. Here, we used the age-adjusted scores for WAIS-R subtests Arithmetic and 

Digit Symbol Coding as well as the total score from a three-trial version of the RAVLT as cognitive predictors. 

Verbal learning and memory (RAVLT), processing speed (Digit Symbol Coding), and auditory verbal working 

memory (Arithmetic) have shown strong associations with transition to psychosis and changes in functioning in 

previous studies [28], [58], [59].  

Brain age gap 

We used the publicly available pre-trained ENIGMA brain age model (https://photon-ai.com/enigma_brainage) 

to estimate the brain age in the PACE 400 cohort. The model was trained using ridge regression to estimate 

normative models of the association between chronological age and 14 subcortical gray matter regions (nucleus 

accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus), 2 lateral ventricles, 68 cortical 

thickness, and 68 surface area measures, and total intracranial volume in a healthy sample of 952 males (16 

scanning sites) and 1236 females (22 scanning sites) aged 18–75 years[65]. Standardised protocols were used 

for image processing and feature extraction across sites (http://enigma.ini.usc.edu/protocols/imaging-

protocols/). To control for regression dilution, a common phenomenon in brain age prediction models resulting 

in a systematic overestimation of the brain age for younger individuals and a systematic underestimation of the 

brain age for older individuals[66], we included chronological age as covariate in our analysis as suggested by 

the ENIGMA brain age model[65]. An overview of the estimated brain age gap for individuals with neuroimaging 

in the PACE 400 cohort using the ENIGMA Photon Brain Age Model without correction and with correction by 

removing the linear trend caused by chronological age is shown in Figure S2 in the supplemental material. 

Model 

Survival analysis was applied to analyse transition to FEP. Cox proportional hazards regression[67] was used to 

investigate the predictive value of clinical predictors combined with cognition, neuroimaging, or brain age gap. 

We fitted a base model including three clinical variables as well as “enhanced” models that added one of the 

following modalities: CAARMS subscales, cognition, MRI, or brain age gap. For each additional modality, we 

added intially one additional predictor and in a further analysis a maximum of two predictors to remain within 

a maximum of five predictors (three clinical predictors plus two predictors for each additional modality) resulting 

in 10-15 events per predictor[68]–[72].The analysis plan is summarized in Figure 1. 
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Three predictors GAF, duration of symptoms prior to service entry, and UHR subgroup were included in the base 

model based on univariate analysis in Nelson et al[16]. More information on the clinical predictors is provided 

in the supplemental material. With regard to the additional modalities, the CAARMS subscales disorders of 

thought content and conceptual disorganization, most significant additional variables identified in Nelson et 

al.[16], were included to provide additional information on the severity of positive psychotic symptoms and to 

control for the effect of adding additional variables to the base model. The first principal component of each 

MRI domain as well as cortical thickness values for left fusiform, right superior temporal, and left and right 

paracentral regions were included as neuroimaging predictors. As neuroanatomical predictor, brain age gap plus 

chronological age were included. For the subset of participants with cognition measures, the base model was 

repeated and compared in a separate sample with two enhanced models: first adding CAARMS subscales and 

second adding cognition predictors measured by age-adjusted scores for Wechsler subtests Arithmetic and Digit 

Symbol Coding and the RAVLT total score. Due to a difference in the number of participants with neuroimaging 

and cognition data, we performed our analysis in separate neuroimaging and cognition data sets from the PACE 

400 sample. Each model was internally validated using bootstrapping (1,000 samples)[74]. 

The enhanced models were then compared to the base model (GAF, duration of symptoms prior to service entry, 

and UHR subgroup) to assess the additional predictive value of each modality. For each enhanced model, the 

likelihood-ratio (LR) test (LRT) for added value was obtained by comparing log likelihoods of the base and full 

models. The significance level for P values from the LRT was <0.05. We also determined the fraction of new 

information as the proportion of total predictive information that was added by cognition, MRI predictors, or 

brain age gap. More information on the calculation of the fraction of new information is provided in the 

supplemental material. Prior to the analysis, we checked if all included variables in the analysis and the variable 

describing the treatment groups (treatment-as-usual participants and participants that received trial 

treatments) satisfy the proportional hazards assumption. The analysis was performed in R 4.1.1[75] using the 

rms[76] and glmnet[77] package. Code for this analysis will be made available at https://github.com/preempt-

centre-for-research-excellence/MultiPredModelPACE400. 

Results 

Table 1 details the descriptive statistics of the neuroimaging and cognition sample at baseline and follow-up. A 

total of 212 UHR individuals (49% female) were included in the neuroimaging data set (age at baseline (mean ± 
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SD) = 19 ± 5 years). There were 65 transitioned cases (31%) in the neuroimaging sample with an average time to 

transition of 168 days (SD = 461 days). The cognition data set contained a total of 94 UHR individuals (51% 

female) with an average age of 21 years (SD = 3.5 years). In the cognition sample, there were 39 transitioned 

cases (41%) with an average time to transition of 217 days (SD = 528 days). The demographic and clinical 

characteristics of the n=416 total sample have been reported and discussed in detail in a previous 

publication[16].  

Clinical measures plus neuroimaging 

Table 2 lists the regression coefficients and test scores after internal validation using bootstrapping for clinical 

and neuroimaging variables in a multivariate Cox regression model to predict transition to FEP in PACE 400. The 

base model with GAF, duration of symptoms prior to service entry, and UHR subgroup as predictors in the 

neuroimaging sample achieved a concordance index (CI) of 0.68. There was strong evidence that all three 

individual predictors had an effect on the risk for transition to FEP (GAF: HR=0.51 [95% CI: 0.33,0.71], P=0.001; 

Duration of symptoms prior to service entry – log transformed: HR=1.68 [95% CI: 1.16,2.64], P=0.015; UHR 

subgroup – BLIPS vs. Vulnerability: HR=3.13 [95% CI: 1.26,10.50], P=0.017; UHR subgroup – Attenuated Psychosis 

vs. Vulnerability: HR=1.28 [95% CI: 0.62,3.55], P = 0.017).  

The addition of the CAARMS subscales ‘disorders of thought content’ or ‘conceptual disorganization’ to the base 

model increased the model fit by 3-4% adding marginal new information (LRT disorders of thought content: 

P=0.240, LRT conceptual disorganization; P=0.302). The addition of the first bilateral principal component of 

cortical surface area, curvature, volume, or thickness did not add new information to the clinical model (LRT 

surface area: P=0.946, LRT curve: P=0.789, LRT volume: P=0.687, LRT thickness: P=0.463). Subsequently, a 

combination of the first principal component of thickness and volume or the first and second principal 

components for cortical thickness, as cortical thickness and volume appeared to add the most information to 

the clinical model out of the four cortical domains, resulted in a marginal increase of new information (2%) with 

no effect (LRT thickness & volume: P=0.752, LRT thicknes 1. & 2. PCA: P=0.701) (see Table S1).  

Out of the four individual regions identified in the ENIGMA clinical high risk for psychosis initiative to be 

associated with psychosis conversion, cortical thickness for the right paracentral region added the most new 
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information to the clinical model (7%) with an increase in CI to 0.69. However, adding the regional cortical 

thickness values individually as predictors to the base model did not have a significant effect on the model fit 

(LRT right paracentral: P=0.119, LRT left paracentral: P=0.131, LRT right superior temporal: P=0.412, LRT left 

fusiform: P=0.137). The largest addition of new information of 12% to the base model was achieved by adding 

cortical thickness values of left paracentral and left fusiform together, although with small effect (LRT: P=0.101) 

(see Table S1). 

Clinical measures plus brain age gap 

Table 3 lists the regression coefficients and test scores after internal validation using bootstrapping for clinical 

and brain age gap variables. Adding brain age gap and chronological age to the clinical model resulted in 7% of 

new information and an increase in CI to 0.69, although not significant (LRT: P=0.291). The fraction of new 

information was predominantly due to the addition of age as shown by the individual analysis in Table 3. 

Clinical measures plus cognition 

Table 4 lists the regression coefficients and test scores after internal validation using bootstrapping for clinical 

and cognition variables. The base model with GAF, duration of symptoms prior to service entry, and UHR 

subgroup as predictors in the cognition sample achieved a concordance index (CI) of 0.69. As opposed to the 

base model in the neuroimaging data set, there was strong evidence that in the base model only GAF had an 

effect on the risk of transition to FEP (GAF: HR=0.33 [0.15,0.54], P=0.001) but not duration of symptoms prior to 

service entry or UHR subgroup categories. Similar to the results in the neuroimaging data set, the addition of 

the CAARMS subscales disorders of thought content or conceptual disorganization to the base model only 

marginally increased the model fit by 1-4% (LRT disorders of thought content: P=0.305, LRT conceptual 

disorganization: P=0.605) with no improvement in CI. Adding RAVLT total score and the age-adjusted scores for 

Arithmetic and Digit Symbol Coding individually (+0-9%, LRT Digit Symbol Coding: P=0.492, LRT Arithmetic: 

P=0.113, LRT RAVLT total: P=0.975) or combined (+2-16%, see Table S2) as cognitive predictors to the base model 

did not result in any large improvement of the model fit. 

Discussion 
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In this study, we assessed the predictive value of additional modalities including cognition, structural 

neuroimaging, or the neuroanatomical measure brain age gap to a base clinical model of transition to FEP (GAF, 

duration of symptoms prior to service entry, and UHR subgroup) in the PACE 400 sample, derived using Cox 

proportional hazards regression models. The cognitive variables, verbal learning and memory (RAVLT), 

processing speed (Digit Symbol Coding), and auditory verbal working memory (Arithmetic), added marginal 

additional predictive information to the clinical model. Additionally, the addition of neuroimaging measures such 

as cortical surface area, curvature, volume, or thickness resulted in no significant improvement of the model fit 

and accuracy. The neuroimaging composite measure brain age gap plus chronological age added 7% of new 

information and increased CI from 0.68 to 0.69, but this effect was predominantly a result of the addition of 

chronological age as a predictor rather than specific differences in brain structure.  

Previous studies have shown that multimodal approaches, particularly machine learning models, may help to 

more accurately estimate the individual transition risk in UHR samples compared to unimodal approaches[11], 

[15], [78], [79]. Most commonly, the complementary predictive value of cognition, neuroimaging, and genetic 

features have been investigated. Our results suggest that the combination of MRI and clinical assessment only 

marginally improved the fit of a psychosis transition prediction model in the PACE 400 cohort. The combination 

of neuroimaging with the base clinical model resulted in a similar model fit and CI when controlling for adding 

the next significant clinical variables identified in Nelson et al.[16], the CAARMS subscales for disorders of 

thought content and conceptual disorganization.  

The discrepancy in outcomes with previous multimodal UHR studies could possibly be related to the 

heterogeneity of the PACE 400 cohort in that it is a collection of cohort studies and clinical trials conducted over 

an extended period of time (14 years). Moreover, studies investigating the benefit of multimodal prediction 

models either suggest only a marginal improvement compared to unimodal approaches[78] or use a small 

sample size[79] resulting in a strong risk of misestimation[80], [81]. More promising results have been achieved 

when stacking different modalities[15] e.g., using generalised stacked models[11], as stacking determines how 

to optimally combine the predictions from each modality. However, stacked Cox proportional hazards regression 

models are particularly complex due to the inclusion of time-to-event information. Furthermore, previous 

studies suggest that the change in cortical structure, especially cortical thickness, may potentially be a more 
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suitable predictor for transition to psychosis compared to cortical measures assessed at baseline[31], [82], [83]. 

The addition of cognitive measures to the clinical model did not result in an improvement of fit. Our results are 

consistent with previous studies analysing the predictive value of cognition in the PACE 400 cohort[19], [58] 

showing that cognition is not a strong predictor of transition to psychosis. Our results on the additive predictive 

value of cognition are restricted by the differences in cognitive batteries across studies and the resultant small 

size of the cognition sample in this study. The neuroanatomical measure brain age gap did not improve model 

accuracy when considered alongside age. Our findings align with the results from the North American Prodromal 

Longitudinal Study that found that the predictive variance of brain age gap overlapped entirely with age[4]. 

Further, our results in terms of brain age gap are limited by the usage of an publicly available external model 

that was trained on healthy individuals aged 18-75 years. Although the ENIGMA Photon Brain Age model has 

proven to be accurate in a previous study, the lack of a validation sample in our cohort and the slightly different 

age range with an average age of 20 years (SD=±3.5 years) may have potentially influenced our results. Finally, 

the predictive value of brain age gap for transition to psychosis could be reduced by the large age range in our 

sample resulting in a discrepancy of predictive information in similar brain age values for younger and older 

participants. This could be accounted for by dividing the sample into age groups besides adding age as covariate, 

but was not performed in this sample due to the low sample size. 

Our study is limited by the low number of events (transitioned cases) in the subset of the PACE 400 cohort that 

had cognitive or neuroimaging data available, highlighting a key drawback to adding modalities to the structured 

clinical assessment routine as they multiply the costs and workload of the assessment. Potentially, the low 

number of events could partially explain the lack of predictive benefit of multimodal models observed in this 

study as the characteristics of individuals with complete data may differ from individuals who were excluded 

from this study. A low number of events restricts the number of potential predictors, the optimization of the 

model fit, and the validation of the fitted model. Additionally, we did not account for nonstandard treatment 

due to randomization to intervention trials that are part of the PACE 400 sample as testing the proportional 

hazards assumption did not indicate a need for stratification based on treatment received. Moreover, a 

sensitivity analysis in the original PACE 400 study indicated the same results for the treatment-as-usual 

participants (i.e., excluding 244 who had received trial treatments) and the entire cohort[16]. Another limitation 
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is the possibility that some transitioned cases were not detected, i.e., if they were unavailable for interview and 

had not attended a public mental health service[16]. 

Another major limitation of our study was the heterogeneity in neuroimaging measures due to different MRI 

scanners used at assessment sites. Figure S1 illustrates the inherited bias across sites for cortical thickness in 

right rostral middle frontal region. Harmonizing the neuroimaging measures across scanner sites using the 

ComBat method successfully removed the site bias although the ComBat method has shown to have the 

potential of causing distortion in the absence of a scanner or site effect [84] and is outperformed by traveling-

subject based harmonization methods [85]. The need for harmonization raises a number of questions with 

regard to the clinical application of multimodal models for the prediction of transition to psychosis in UHR 

individuals. Harmonization performs well during the implementation and evaluation phase of a model as the 

distributions of each scanner or site can be determined in the training and test set. However, harmonization in 

a clinical application relies on a-priori knowledge of the deployed scanner to remove the inherited bias. 

Moreover, there is no agreed upon way to standardize MRI measures within a cross-validation framework used 

to train machine learning models[63]. Thus, the heterogeneity in MRI measures across sites and scanners 

severely limits the broad clinical applicability of multimodal prediction models that include neuroimaging and 

highlights the need for local recalibrations of models. 

In sum, our results show that the inclusion of neuroimaging or cognitive information in a risk model that 

estimates the proportional hazard of transition to psychosis in UHR subjects in the PACE 400 study appears to 

add little information to improve the fit of the clinical based model. Hence, these findings raise the question 

whether adding baseline cognitive and structural MRI assessments provides sufficient additional predictive 

information to warrant the associated computational and economical costs, and the increased workflow 

complexity of actioning these assessments in a clinical setting besides their value in a clinical setting. However, 

it is important to acknowledge that our findings are limited by the constraints on methodological choices given 

by the nature of the cohort which could potentially lowered the importance of our findings. 
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Figure/Table Legends 

Figure 1: Study plan using nested Cox proportional hazards regression models, internal validation, and 

nested models evaluation 

Study plan using nested Cox proportional hazards regression models with a base model including Global 

Assessment of Functioning (GAF), duration of symptoms prior to service entry, and ultra high risk (UHR) group 

as clinical variables as well as “full” models that contain the three clinical variables and one of the additional 

modalities: neuroimaging (MRI), brain age gap, or cognition. We also fitted a model containing the three 

clinical variables plus the CAARMS subscales disorders of thought content and conceptual disorganization to 

control for the effect of adding two variables to the base model. The full models are subsequently compared 

to the base model using the likelihood-ratio test (LRT), the fraction of new information, and the concordance 

index (CI). 
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Table 1: Baseline and follow-up descriptive information about neuroimaging and cognition sample 

 Cognition, N = 941 MRI, N = 2121 

Intervention treatment 24% (23/94)  37% (78/212) 

Female 51% (48/94)  49% (104/212) 

Age at baseline (years) 21.1+/-3.5 19.9+/-3.5  

Time between symptom onset and first contact with PACE (days) 564.2+/-1,056.4 430.9+/-632.5  

UHR subgroup   

any BLIPS 24% (23/94)  16% (34/212) 

APS or APS+Vulnerability 59% (55/94)  68% (144/212) 

Vulnerability 17% (16/94)  16% (34/212) 

Clinical measures   

BPRS Total 43.4+/-7.5 46.2+/-9.0  

SANS Total 18.3+/-13.6 19.3+/-11.9 

GAF 62.3+/-14.5 59.2+/-11.7 

QLS Total 73.3+/-22.3 75.1+/-20.3 

CAARMS Disorders of Thought Content, severity 2.1+/-1.1 2.0+/-1.1 

CAARMS Perceptual Abnormalities, severity 1.9+/-1.5 2.1+/-1.5 

CAARMS Conceptual Disorganisation, severity 2.1+/-1.1 1.9+/-1.0  

Cognition   

Coding 9.3+/-2.5  

Arithmetic 8.7+/-3.1  

RAVLT total 28.6+/-6.3  

Brain Age Gap  -0.3+/-7.4  

Follow-up   

Transition to psychosis 41% (39/94)  31% (65/212) 

Follow-up time (days) 4,055.3+/-320.6 3,052.8+/-1,066.0 

Time to transition (days) 217.4+/-528.0  167.8+/-460.9 

SOFAS at follow-up 62.9+/-17.0) 69.0+/-16.0 

1% (n/N) ; Mean+/-SD (N) 
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Table 2: Hazard ratio (HR) and P value after internal validation (bootstrapping N = 1,000) for clinical and 

neuroimaging predictor variables in the multivariate Cox proportional hazards regression analysis of transition 

to psychosis in PACE 400 (n=212). 

 

Base  

Base +  
Disorders 

of 
Thought 
Content 

Base + 
Conceptual 
disorganizat

ion 

Base + MRI 
surface PCA 

Base + MRI  
curve PCA 

Base + MRI 
volume PCA 

Base + MRI 
thickness 

PCA 

Base +  
Thickness 
Paracentr

al left 

Base + 
Thickness 
Paracentr

al Right 

Base + 
Thickness 
superior 
temporal 

right 

Base + 
Thickness 
fusiform 

left 

HR P HR P HR P HR P HR P HR P HR P HR P HR P HR P HR P 

Duration of 
symptoms 
prior to 
service entry 
– log 
transformed 

 

1.6
8 

0.01
5* 

1.6
8 

0.02
1* 

1.64 0.025* 1.68 0.019* 1.67 0.021* 1.66 0.018* 1.65 0.019* 
1.6
6 

0.01
8* 

1.6
7 

0.01
7* 

1.6
5 

0.024
* 

1.7
0 

0.019
* 

GAF 0.5
1 

0.00
1* 

0.5
3 

0.00
2* 

0.52 0.001* 0.51 0.001* 0.51 0.001* 0.50 0.001* 0.50 0.001* 
0.5
0 

0.00
2* 

0.5
0 

0.00
1* 

0.5
0 

<0.00
1* 

0.5
1 

<0.00
1* 

UHR 
subgroup  

0.01
7* 

 
0.05
0 

 0.024*  0.015*  0.014*  0.014*  0.017*  
0.03
1* 

 
0.02
7* 

 
0.017
* 

 
0.024
* 

BLIPS vs. 
Vulnerability 

3.1
3 

 
2.5
6 

 3.08  3.12  3.12  3.10  3.04  
3.1
0 

 
2.8
7 

 
3.0
5 

 
2.9
9 

 

Attenuated 
Psychosis vs. 
Vulnerability 

1.2
8 

 
1.1
1 

 1.35  1.28  1.28  1.26  1.26  
1.2
5 

 
1.2
1 

 
1.2
9 

 
1.2
6 

 

CAARMS - 
Disorders of 
thought 
content 

  
1.3
7 

0.29
2 

                  

CAARMS - 
Conceptual 
disorganizati
on 

    1.14 0.389                 

1. PC left 
hemisphere
MRI variable 

  
    

10.13
99 

0.8939
54 

1.17
05 

0.6668
19 

0.53
93 

0.5227
28 

1.29
12 

0.5794
91 

0.7
8 

0.16
4 

0.7
7 

0.14
0 

0.8
7 

0.468 
0.7
6 

0.131 

LR χ2 
 

35.0
0 

 36.3
8 

 36.07 
 35.00  35.07  35.16  35.54  

37.4
4 

 
37.2
8 

 35.67  37.21 

Fraction of 
new 
information  

 - 
 

0.04 
 0.03 

 0.00  0.00  0.01  0.02  0.07  0.06  0.02  0.06 

Concordanc
e index (CI)  0.68 

 
0.68 

 0.68 
 0.68  0.68  0.68  0.68  0.69  0.69  0.68  0.68 

For each full model, the likelihood-ratio (LR) test was obtained by comparing log likelihoods of the base and full models. The fraction of new 
information is the proportion of total predictive information in clinical plus MRIthat was added by MRI. It was calculated as follows: 1 – Base 
LR χ2/Full LR χ2. HR, Hazard ratio; PC, principal component; LR χ2, likelihood ratio Chi-squared statistics; *significance level for LR test 
P values: P < 0.05 
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Table 3: Hazard ratio (HR) and P value after internal validation (bootstrapping N = 1,000) for clinical and brain 

age gap predictor variables in the multivariate Cox proportional hazards regression analysis of transition to 

psychosis in PACE 400 (n=212). 

 

Base  
Base + Disorders 

of thought 
content 

Base + Conceptual 
disorganization 

Base + Brain 
Age Gap 

Base + Age 
Base + Brain Age 

Gap + Age 

HR P HR P HR P HR P HR P HR P 

Duration of symptoms prior to 
service entry – log transformed 

 

1.68 0.015* 1.68 0.021* 1.64 0.025* 1.67 0.020* 1.71 0.022* 1.70 0.024* 

GAF 0.51 0.001* 0.53 0.002* 0.52 0.001* 0.51 0.001* 0.49 <0.001* 0.49 0.001* 

UHR subgroup  0.017*  0.050  0.024*  0.017*  0.003*  0.004* 

BLIPS vs. Vulnerability 3.13  2.56  3.08  3.14  3.19  3.21  

Attenuated Psychosis vs. 
Vulnerability 

1.28  1.11  1.35  1.28  1.13  1.13  

CAARMS - Disorders of thought 
content 

  1.37 0.292         

CAARMS – Conceptual 
disorganization 

    1.14 0.389       

Brain age gap       1.03 0.879   1.04 0.847 

Age         0.74 0.151 0.74 0.180 

LR χ2  35.00  36.38  36.07  35.03  37.42  37.47 

Fraction of new information   -  0.04  0.03  0.00  0.07  0.07 

Concordance index (CI)  0.68  0.68  0.68  0.68  0.69  0.69 

For each full model, the likelihood-ratio (LR) test was obtained by comparing log likelihoods of the base and full models. The fraction of new 
information is the proportion of total predictive information in clinical plus brain age gap that was added by brain age gap. It was calculated 
as follows: 1 – Base LR χ2/Full LR χ2. HR, Hazard ratio; PC, principal component; LR χ2, likelihood ratio Chi-squared statistics; 
*significance level for LR test P values: P < 0.05 
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Table 4: Hazard ratio (HR) and P value after internal validation (bootstrapping N = 1,000) for clinical and 
cognition predictor variables in the multivariate Cox proportional hazards regression analysis of transition to 
psychosis in PACE 400 (n=127). 

 

Base  
Base + Disorders 

of thought 
content 

Base + 
Conceptual 

disorganization 

Base +  Digit 
Symbol Coding 

Base + 
Arithmetic 

Base + RAVLT 
total 

HR P HR P HR P HR P HR P HR P 

Duration of symptoms prior to 
service entry – log transformed 

 

1.47 0.145 1.49 0.153 1.47 0.150 1.44 0.180 1.52 0.134 1.47 0.166 

GAF 0.33 0.001* 0.35 0.002* 0.33 0.001* 0.31 0.001* 0.35 0.002* 0.33 0.001* 

UHR subgroup  0.712  0.839  0.684  0.677  0.845  0.760 

BLIPS vs. Vulnerability 1.63  1.34  1.71  1.72  1.42  1.63  

Attenuated Psychosis vs. 
Vulnerability 

1.24  1.04  1.33  1.26  1.21  1.24  

CAARMS - Disorders of thought 
content 

  1.21 0.338         

CAARMS - Conceptual 
disorganization 

    1.09 0.716       

Cognition variable       1.165 0.480550 0.61 0.178 1.01 0.977 

LR χ2  26.94  27.99  27.21  27.41  29.46  26.94 

Fraction of new information   -  0.04  0.01  0.02  0.09  0.00 

Concordance index (CI)  0.69  0.69  0.61  0.68  0.69  0.69 

For each full model, the likelihood-ratio (LR) test was obtained by comparing log likelihoods of the base and full models. The fraction of new 
information is the proportion of total predictive information in clinical plus cognition that was added by cognition. It was calculated as 
follows: 1 – Base LR χ2/Full LR χ2. HR, Hazard ratio; PC, principal component; LR χ2, likelihood ratio Chi-squared statistics; *significance level 
for LR test P values: P < 0.05 
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• Duration of 
symptoms prior to 
service entry 

• Global Assessment 
of Functioning 
(GAF) 

• Ultra high risk 

• CAARMS – disorders of 
thought content  

• CAARMS – conceptual 
disorganization 

• 1. & 2. bilateral principal 
components 

• Thickness of left and right 
paracentral, left fusiform, 
and right superior temporal 
region 

• Brain age gap 
• Age 

• Arithmetic 
• Digit Symbol Coding 
• RAVLT total (first three 

trials) 

+ 

+ 

+ 

+ 

Multivariate Cox 

proportional 

hazards regression 

analysis using 

bootstrapping 

(1,000 bootstrap 

samples) 

Likelihood-ratio 

test (LRT) 

Concordance 

index (CI) 

Fraction of new 

information 

Clinical (Base) 

CAARMS 

Brain age 

Cognition 

MRI (surface, curve, volume, and 

thickness) 
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